Natural Language Processing and Standardized Terminologies

Rui Zhang, MS
Institute for Health Informatics, University of Minnesota, Twin Cities

Genevieve B Melton, MD, MA, FACS, FASCRS
Department of Surgery & Institute for Health Informatics
University of Minnesota, Twin Cities
Natural Language Processing (NLP)

- Techniques to automatically analyze natural language (free text written by people)
- MRI revealed a lacunar infarction in the internal capsule.

MRI revealed a lacunar infarction in the internal capsule.

Parsing, Named entity recognition (NER), etc.

Mapping, Acronym detection, Relationship extraction, etc.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Predicate (Indicator)</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Resonance Imaging (MRI)</td>
<td>DIAGNOSES</td>
<td>Infarction, Lacunar</td>
</tr>
<tr>
<td>Internal Capsule</td>
<td>LOCATION_OF</td>
<td>Infarction, Lacunar</td>
</tr>
</tbody>
</table>
NLP in Health Sciences

Clinical Notes

- Medication
- Problem list
- Medical history
- Smoking status
- ...

Biomedical Literature

Biomedical knowledge (structured)

Health care providers, clinical researchers

First International Conference on Research Methods for Standardized Terminologies
Clinical NLP and Standardized Terminologies

• Linguistic and medical knowledge are necessary to implement clinical NLP tasks
• Linguistic knowledge provides
 - Lexical information
 - Syntactic structure
• Medical knowledge provides
 - Standardized terminologies
 - Semantic network
Unified Medical Language System® (UMLS®)

Metathesaurus

- Over 1 million biomedical concepts
- 100 vocabularies (SNOMED CT, MeSH, RxNorm, LOINC, Omaha System, etc.)

Semantic Network

- 133 semantic types
- 54 relationships between types

UMLS Knowledge Sources

SPECIALIST Lexicon & Lexicon Tools

- Over 200,000 terms
- Syntactic, morphological, orthographic information
- LVG, Norm, Wordind

First International Conference on Research Methods for Standardized Terminologies
UMLS-Metathesaurus

Diagnosis: Logic Observation Identifier Names and Codes (LOINC)
Procedures & Supplies: Current Procedural Terminology (CPT)
Diseases: International Classification of Diseases and Related Health Problems (ICD-10)
Comprehensive: Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT)

First International Conference on Research Methods for Standardized Terminologies
Map biomedical text to the UMLS MetaThesaurus

Phrase: "obstructive sleep apnea"

Meta Candidates

1000 Obstructive sleep apnoea (Sleep Apnea, Obstructive) [Disease or Syndrome]
901 Apnea, Sleep (Sleep Apnea Syndromes) [Disease or Syndrome]
827 Apnea [Pathologic Function]
827 Sleep [Organism Function]
827 Obstructive (Obstructed) [Functional Concept]
827 Apnea (Apnea Adverse Event) [Finding]
793 E Sleeping (Asleep) [Finding]
755 E Sleepy (Drowsiness) [Finding]
727 E Sleeplessness [Sign or Symptom]

Meta Mapping (1000):

1000 Obstructive sleep apnoea (Sleep Apnea, Obstructive) [Disease or Syndrome]

Aronson AR, Lang FM. J Am Med Inform Assoc 2010;17(3):229-236

First International Conference on Research Methods for Standardized Terminologies
Chaining NLP tasks: pipelines

• Any practical NLP task must perform sub-tasks (low-level tasks must execute sequentially)
• Pipelined system enables applications to be decomposed into components
• Each component does the actual work of analyzing the unstructured information
• Unstructured information management architecture (UIMA)
An example of a sentence discovered by the sentence boundary detector:
Fx of obesity but no fx of coronary artery diseases.

Tokenizer output – 11 tokens found:
Fx of obesity but no fx of coronary artery diseases.

Normalizer output:
Fx of obesity but no fx of coronary artery disease.

Part-of-speech tagger output:
NN IN NN CC DT NN IN JJ NN NNS.

Shallow parser output:
Fx of obesity but no fx of coronary artery diseases.
NP PP (NP) (NP) PP (NP) NP.

Named Entity Recognition – 5 Named Entities found:
Fx of obesity but no fx of coronary artery diseases.
obesity (type=diseases/disorders, UMLS CUI=C0028754, SNOMED-CT codes=308124008 and 5476005) coronary artery diseases (type=diseases/disorders, CUI=C0010054, SNOMED-CT=8957000) coronary artery (type=anatomy, CUI(s) and SNOMED-CT codes assigned) artery (type=anatomy, CUI(s) and SNOMED-CT codes assigned) diseases (type=diseases/disorders, CUI = C0010054).

Status and Negation attributes assigned to Named Entities:
Fx of obesity but no fx of coronary artery diseases.
obesity (status = family_history_of; negation = not_negated) coronary artery diseases (status = family_history_of, negation = is_negated).

Savova GK et al. J Am Med Inform Assoc 2010;17(5):507-513

First International Conference on Research Methods for Standardized Terminologies
Output Example: Drug Object

“Tamoxifen 20 mg po once daily started on March 1, 2005.”

Drug

- Text: Tamoxifen
- Associated code: C0351245
- Strength: 20 mg
- Start date: March 1, 2005
- End date: null
- Frequency: 1.0
- Frequency unit: daily
- Duration: null
- Route: Enteral Oral
- Form: null
- Status: current
- Change Status: no change

po: per oral/ by mouth
NLP of Nursing Narratives

• To compare the semantic categories of MedLEE and ISO reference terminology models for nursing diagnoses and actions
• In aspects of site or location, MedLEE was more granular than ISO models
• In clinical procedure, two ISO components (action and target) mapped to one MedLEE semantic category
• The ISO models requires additional specification of selected semantic categories
• Analysis also suggested areas for extension of MedLEE

MedLEE: Medical Language Extraction and Encoding system, Columbia University
ISO: International Standards Organization
Analysis of Free Text to Inform Terminology Development

• Analyze text associated with “other” targets within Omaha system interventions
• To understand the clinicians’ information needs
• To identify additional suggested and new targets
• In particular, new targets were suggested for:
 – Daily living
 – Disease pathophysiology
 – Pain management

Summary

• Linguistic and medical knowledge are needed to implement clinical NLP tasks
• UMLS provides useful standardized terminologies for clinical NLP applications
• UIMA provides pipelined framework to analyze clinical texts
• Analysis of NLP systems and free texts can inform the development of terminologies